If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-634=0
a = 3; b = 2; c = -634;
Δ = b2-4ac
Δ = 22-4·3·(-634)
Δ = 7612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7612}=\sqrt{4*1903}=\sqrt{4}*\sqrt{1903}=2\sqrt{1903}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1903}}{2*3}=\frac{-2-2\sqrt{1903}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1903}}{2*3}=\frac{-2+2\sqrt{1903}}{6} $
| 4.8j-6.2=95.6 | | 97=h+110 | | -4x+(3)=-x+3 | | 9b=81b | | 3y=-24-4 | | 37.82+0.25x=90 | | (3x)(2x)=65 | | 5y-15-10=155 | | 1x+4=66 | | 3a+2a+0.5a=20 | | 21=12+6n | | 5y-15-10=145 | | 90=(2x+10) | | 78=(x-2) | | 120=(x+35) | | -37+z=8 | | 5y-15-10=180 | | 14+1/4x+3=10 | | 6x=32x+104 | | -8-p=6p+2(1-6p) | | -8-p=6p+2(1-6p | | 180=(3y)+120 | | -3(7+6x)=69 | | -5x+92/6=3x | | -3-4x-1/2x=3/2 | | -2w^2+6w+(w-7)^2-61=0 | | -4(1+8x)=-4x-32 | | -1+2x+4x=59 | | (w-7)^2=2w^2-6w+61 | | 8(7x+5)=7(3x+6)+138 | | X+18=5x6 | | -8-x+7x=64 |